IvyPdf

How to use IvyPdf
Getting Started
vy Template Editor

APl Reference
PdfParser
DataSetParser
lvyDocument
lvyDocumentReader
DataSetReader
DataTable extensions
String extensions
Command-line parameters

Examples
PdfParser
DataSetParser
Pattern Matching
Using TemplateLib in .Net
Custom layout

Tutorial

Quick Hints

FAQ

Licensing

IvyPdf

Version 1.68

IvyPdf helps you to extract valuable information from unstructured PDF documents in a quick and
easy way. It can extract unlimited number of individual values and tables and provides powerful
post-processing mechanism to further clean and format the data.

While PDFs are the main target of the library, it can be also used to parse Excel, Text, HTML and
other file formats, thus allowing you to use a single tool for all your data processing needs.

How to use IvyPdf

IvyPdf can be used in a few different ways:
e Inyour.Net projects:

Add reference to Ivypdf.d11 and use pdfparser object to load and parse PDF files.

new PdfParser(IvyDocumentReader.ReadPdf("mydoc.pdf™));
p.Find("Revenue") .Find("Total").Right() .Text;

PdfParser p
string text

e Asastand-alone application:
Use lvy Template Editor to write extraction logic, organize it by templates, preview and validate
the results. Use "Bulk File Processing" menu option or command-line utility (IvyTemplate.exe)
to run the extraction templates on your files.

af://n3
af://n8

e Hybrid approach:
Use Ivy Template Editor to write the extraction logic and store it as .tl file. Then load .tl file from
your .Net code and run it on PDF files.
See Using TemplateLib in .Net section below for more details.

Getting Started

Download IvyPdf.zip and unzip it to a folder of your choice. If you have a license key please start
IvyTemplateEditor.exe, go to Help/About and enter the key there. It will register Ivy on your
machine. If you don't have a license key, the 30 days trial will begin from the day of the first use.

Check out Ivy examples (sample.tl and Disney.ipb) in the Samples folder.

Read Tutorial and Quick Hints sections below, or use AP| Reference to familiarize yourself with vy

commands and syntax.

Ivy Template Editor

Even if you plan to use IvyPdf strictly from your program code, it's a good idea to use lvy Template
Editor to test the code and the extraction logic first.

1. Start lvyTemplateEditor.exe

2. 0Open a PDF document from the top menu, or drag-drop it on the editor pane
l#.1534120612905

3. Highlight a template and create a new field |#.1534122554298

4. Go to the Code window and try a few commands. For example:

p.Reset()
.Find("Net Income")
.Right(

.Text

Click Evaluate to test your code.

Use Toolbox window to test different commands, for example Find, Right, Down . Try extracting
tables with various parameters. The history of commands is shown there for your reference and can
be copied to the code definition.

API Reference
PdfParser

PdfParser class is used for parsing token collection, extracted from PDF or IPB files.

af://n19
af://n24
af://n41
af://n42

Create parser
pdfrarser() - default constructor.

PdfParser(IvyDocument ivyDocument) - create a parser from IvyDocument instance.

Open document
PdfParser(IvyDocumentReader.ReadPdf(string filename)) - open PDF file
PdfParser(IvyDocumentReader.ReadIpb(string filename)) - open IPBfile.

IPB files contain only text information from PDFs and therefore are smaller and faster to use.
Consider converting PDF files to IPB if you are doing multiple extractions, working on extraction
template and so on.

Documents can be open from memory:
PdfParser(IvyDocumentReader.ReadPdf(byte[] fileContent))

PdfParser(IvyDocumentReader.ReadIpb(byte[] fileContent))

Search text
Find(params string[] text) -search for next token containing text (partial match).
Find(Regex regex) -search for next token matching specified regular expression.

FindRegex(string regex) -search for next token matching specified regular expression (case-
insensitive).

Find(Predicate<Token> predicate) -search for next token matching specified properties.

FindPattern(string pattern) -search for next token matching specified pattern. See Pattern
Matching

You can search backwards:
FindPrev(params string text)
FindPrev(Regex regex)
FindPrevRegex(string regex)
FindPrev(Predicate<Token> predicate)

FindPrevPattern(string pattern)

Search by page number

Findpage(int pageNumber) -find first token on specified page.

Find a token relative to current

Left(float offsety = 0, float deviation = 0) -find first token on the left of the current
token. To be found the token should reside on the imaginary line that starts from the center of the
current token. Optional offsety parameter moves the line down (negative value moves up). Token
will be captured ifit's located deviation points away from the line.

Down(float offsetx = 0, float deviation = 0) -find first token located right below from the
current token. To be found the token should reside on the imaginary line that starts from the center
of the current token. Optional offsetX parameter moves the line right (negative value moves left).
Token will be captured if it's located deviation points away from the line.

Right(float offsety = 0, float deviation = 0) -find first token on the right of the current
token.

Up(float offsetx = 0, float deviation = 0) -find first token located right above the current
token

Find first token in line above or below the current
Above () -find first (left-most) token located in the line above the current token.

Below() - find first (left-most) token located in the line below the current token.

Define search region
All search is done within a "Region". Initial region is the whole document.
Here are methods to FILTER a region:

Filterwindow(float x1, float yl, float x2, float y2) -setregion to therectangular
defined by X,Y coordinates on the current token page. Only tokens that completely fit into the
window are included.

Filtercwindow(float x1, float yl, float x2, float y2) -setregionto the rectangular
defined by X,Y coordinates on the current token page. Tokens that partially overlap are included too
(cross-window tool).

Filteroffset(float left, float up, float right, float down) -setregion to the window
located relative to top-left corner of the current token (within the same page).

Filtercoffset(float left, float up, float right, float down) -setregion to the window
located relative to top-left corner of the current token (within the same page). Tokens that partially
overlap are included too.

FilterIndex(int fromIndex, int toIndex) -setregion to range of tokens by theirindex.
FiltercCurrentPage() -setregionto the page of current token.

FilterPage(int fromPage, int toPage = -1) - setregion to page range.
FilterText(params string[] text) - include only tokens that contain specified text.

FilterTextPattern(string pattern) -include only tokens matching specified pattern. See
Pattern Matching

FilterrRegex(Regex regex) - include only tokens that match provided regular expression.

Filter(Predicate<Token> predicate) - region will include only tokens matching the predicate
conditions.

FilterenclosedArea() -setregionto an areaenclosed by Line objects around the current token.
FilterSections(Section section) -filterto specific section.
FilterSections(IEnumerable<Section> sections) -filterto a list of sections.

FilterSections(Predicate<Section> sectionPredicate) -filterto sections chosen based on a
predicate condition.

Filtersections() -filterto all sectionsin the sections collection.
Filterclear() -remove filter. Region will be set to the whole document.
Reset() - remove filter and move to the first token in the document.

Reset(string sequenceName) - optionally set sequenceName that can be used by Exception
handler to log errors.

Parser properties and methods
IvyDocument IvyDocument - reference to underline document used by Parser.
IvyDocument properties are also referenced by Parser object:

e List Tokens - collection of all tokens (including filtered)

e List Lines - collection of line objects

e List Images - collection ofimages

e double[] PageSizesx - contains width of each page

e double[] PageSizesY - contains height of each page

e void SaveIpb(string filename) - save current document as IPB file for quick loading later

e TIvyDocument LoadIpb(string filename) - load from IPB file
string SequenceName - current search Sequence, set by a call to Reset(string sequenceName)
List<string> ParsingHistory - history of commands since the last Reset
List<int> Trace -indexes of all tokens found since the last TraceClear() call
TraceClear() -clears Trace collection
Backtrack(int steps = 1) -go to the token that was found before
Token Token - current token (set by one of Find methods or Filter)
double GetPagewidth(int page) - returns page width
double GetPageHeight(int page) - returns page height
int GetPageCount() - returns number of pages in the document
string Version - returns version of the lvyPdf library

Clone() - returns an exact copy of the PdfParser object that can be used for sub-searches.

Subset(int StartIndex, int EndIndex) -returnsa copy of PdfParser object, including only
tokens in the provided range (by token index).

MergePages(int startPage, int endPage) - merge document pages together, based on the
provided range.

MergePages() - merge all document pages into one long page.

RegionContainsLines(int pageNumber, float x1, float yl, float x2, float y2,
LineFType lineFType) -check whether the specified region contains any line objects.
TineFType can have the following values: A11, Horizontal, vertical, Slanted

RegionContainsImages(int pageNumber, float x1, float yl, float x2, float y2) -check
whether the specified region contains any images.

The following properties are referencing the current Token and can be used as shortcuts
(for example, you can use Text instead of Token.Text):

string Text -token text

string Font - name of the font used to print this token in the PDF document
bool Bold -font bold flag

bool Italic -fontitalicflag

int Page -token page number

float width - width of token bounding box

float Height - height of token bounding box (essentially font height)
float X-coordinate of top-level corner of token bounding box

float Y - coordinate of top-level corner of token bounding box
IvyColor Color -text color, represented as (R, G, B) tuple

bool Black -flag, indicating that token color is black

bool white -flag, indicating that token color is white

bool Grey - flag, indicating that token color is grey (R=G=B)

int Index -index of the token in the Tokens collection

string DataType - datatype of the token, guessed from text. Can be "String", "Number" or
"DateTime".

double? ToNumber() - auto-convert current token text to Double
DateTime? Tobate() - auto-convert current token text to DateTime
Token Next() -reference to the next token (by Index)

Token Prev() -reference to the previous token (by Index)

Find token at the intersection of the other two

Find3rd(Token tl, Token t2, float offsetx = 0, float offsety = 0) -find token at the
intersection of the two provided tokens, for example by header and row category. If multiple tokens
are found in the intersection rectangle, the one that fills most area is chosen. Tokens t1 and t2
should be located on the same page. Optional offsetx and offsety values move the search area
along X and Y axis.

Find3rd has a few overloaded options. Please refer to Examples below for possible uses.

Find3rd(string txtl, string txt2, float offsetXx = 0, float offsety = 0) -Find apage

containing two provided strings, then find third token.

Find3rd(Predicate<Token> predicatel, Predicate<Token> predicate2, float offsetx = 0,
float offsety = 0) -Find a page containing two tokens using provided Predicate conditions, then
find third token.

Find3rd(Func<PdfParser, PdfParser> actionl, Func<PdfParser, PdfParser> action2,
float offsetx = 0, float offsety = 0) - Find tokens using provided actions, then find third
token.

Optionally, you can use current token as t1:

Find3rd(string txt, float offsetXx = 0, float offsety = 0) - Find provided string, then find
third token.

Find3rd(Predicate<Token> predicate, float offsetXx = 0, float offsety = 0) -Findtoken

using Predicate condition, then find third token.

Find3rd(Func<PdfParser, PdfParser> action, float offsetX = 0, float offsety = 0) -
Find token using provided action, then find third token.

Examples:

p.Find3rd("Expenses", "Year 2019")
p-Find3rd("year 2019", "Expenses") //the order doesn't matter
p.Find3rd(x=>x.Text == "Expenses", x=>x.Text == "Year 2019") //find by Predicate

p.Find3rd(x=>x.Find("Expenses"), x=>x.FindPrev("Year 2019")) //using FindPrev()
because "Year 2019" is located before "Expenses" in the document

p.Find("Expenses") .Find3rd("vear 2019") //relative to current token
p.Find("Expenses") .Find3rd(p.FindPrev("Year 2017").Right().Right())

//find two tokens first, then find third one:

Token tl = p.Reset().Find("Expenses');

Token t2 p.Reset().Find("Year 2019");

Token t3 = p.Reset().Find3rd(tl, t2, 50, -20); //move search area 50px right and
20px up

Text extraction

string ExtractText(TextPosition textPosition, bool removeBlankLines, bool
trimSpaces, double TinePixelDeviation)
Parameters:

e Text Position:

o GeometricCompact - usestoken coordinates to combine them into text. Ignores space

between tokens.
GeometricSpaced - uses token coordinates to combine them into text, adding spaces

between tokens according to their position. (Default option)
o Tokenorder - uses order of tokens to prepare text.
removeBlankLines - when set the text won't have any empty lines. Default value = true

e trimsSpaces - will trim spaces around text. Default value = true
linePixelDeviation - allowed vertical deviation of tokens to belong to the same line.

Default value =5.0

string ExtractText() -extract text using default parameters.

Bookmarks

Bookmarks can be used for repetitive tasks. For example find a token “X", filter and search in the
filtered region, then come back to the token “X" and search again.

setBookmark(string name) - setabookmark with specified name
GoBookmark(string name) - set current Token to the bookmark
DeleteBookmark(string name) - delete a bookmark

DeleteAl1Bookmarks () - delete all bookmarks

Conditions and Loops

You can use If method to add conditional logic, checking for specific condition or successful code

execution. You can conditionally execute an action or return a value.
PdfpParser If(condition, thenAction, [elseAction])
pPdfpParser If(action, thenAction, [elseAction])

dynamic If(condition, thenvalue, elsevalue)

dynamic If(action, thenvalue, elsevalue)

Examples:
Go up or down, depending on a condition:

p.If(myvariable == 42, x=>x.Down(), x=>x.Up(Q));

Version without “else”:

p.If(myvariable == 42, x=>x.Down());

Check if a word “test” exists, then search something else:

p.If(x=>x.Find(“test”), x=>x.Find(“wordl”), x=>x.Find(“word2”));

If a word “test” exists return a string:

p.If(x=>x.Find(“test”), “Found”, “Not Found”);

Return a string based on condition:

p.If(myvariable == true, “Yes”, “No”);

In a similar way you can use whiTe loop to test for a condition, or run a code until it succeeds:
while(condition, action)
while(testAction)

while(testAction, action)

Move down until a bold token is found:

p.while(x => !x.Bold, x => x.Down());

Find right-most token starting from your position:

p.Wwhile(x => x.Right(Q));

Count number of occurrences of word “test”:

int counter=0; p.while(x=>x.Find(*"test"*), (Q=>counter++);

You can test for successful code execution using Try method:

bool Try(action)

Count number of occurrences of word “test”:

while(p.Try(x=>x.Find(“test”))) counter++;

Table extraction

DataTable Table(PdfTableOptions tableOptions) - Use for tables with column headers.
To start table extraction the current token should be a header token of one of the columns.

DataTable Grid(PdfTableOptions tableoptions) - Use fortablesthat don't have a header.
Returns a table with generic columns (FieldO, Field1, Field2...).
Current token should be in the first row.

Parameters:
e whiteSpaceLimit - amount of white space that is used to determine the end of table, as ratio
of table row height. (Default value is 2.5)
e MaxRowHeight - determine end of table using absolute distance between rows. (Default value
0)
e MultipPage - attempt to find the table on the next page(s). Table should have header row on
every page. (Default true)

e 1Includeunmatchedcells - extra cells that do not match to header will be added into a new

column. (Default true)

e cColumnBorders - location of every column that will be used to position tokens into columns.
Starts with left border, up to right border (should have [number of columns] + 1). (Default null)

e HeaderSeparatedByLine - use linesin the table header to determine column border locations.
(Default false)

e columnsSeparatedByLines - uselinesin the table body to assign tokens to columns. (Default

false)

e RowsSeparatedByLines - uselinesin the table body to assign tokens to rows. (Default false)

e KeepCurrentPosition - when set, the cursor stays at the same location (table header),
otherwise it moves to the end of table. (Default true)

e TablecCellType - defines whether returned DataTable contains Token objects or String
objects. Possible values are Token, String or ParserDefault.

ParserDefault isusing global valuein pdfParser.options.TableCellType.

In lvy Template Editor the settings can be defined on the template level, by adding this code to
Template Settings:

protected override void Init() { p.Options.TableCellType = TableCellType.Token; }

Using Token objects allows you to get location information from PDFs, but makes coding more
complicated. All Token properties will be included in JSON or XML output in lvy Template Editor.

Sections

Using sections feature you can split the document into logical parts, making data extraction more
reliable. For example, you can specify that you want to parse only specific sections or subsections, or
loop through sections of your choice and extract some data from each one.

Sections collectionisa List of section objects. Each section has Startindex and Endindex,
which refer to the indexes of tokens that belong to that section. Initially Sections collection is
empty. You need to run split method to build the collection (based on the rules that you provide).

Syntax of split function:
split(Predicate<Token> startSectionPredicate) -split on every occurrence of condition.

Split(Predicate<Token> startSectionPredicate, Predicate<Token> endSectionPredicate) -

create sections between tokens that suffice start/end condition.

Split(Func<Token, double> ScoringFunction) -split the document based on token score.

Sections will be split iteratively, by tokens having MAX score.
sp1lit() -split based on default scoring function.

Split functions can be chained. In this case every section will be split into subsections.
Examples:

e (reate sections based on font size, with larger font being a parent section and smaller font
being a subsection.

splitQ

or

split(x => {

double score = Math.Round(x.Height); // use text height as the main
scoring point

if (x.Height < 8) return 0; // ignore small text

if (x.Bold) score++; // add one point for bold

if (x.Y - x.Prev().Y > 40) score++; // add one point for tokens that
have 40px of white space before them

return score;

D"

Split documents on every occurrence of a word.

Split(x=>x.Text == "Chapter")

Split on token of specific font and location.
Split(x=>x.Height==14 && x.Y < 100)

Split by substantial amount of whitespace.
Split(x=>x.Y - x.Prev.().Y > 50)

Split by chapters first, then by font size
Split(x=>x.Text == "Chapter").split()

Note: You can see all current sections in the lvy Template Editor using "View Sections"
button in the Toolbox.

Once sections are created you can use them to filter the document:
FilterSections(Section section) -filterto specific section.
FilterSections(IEnumerable<Section> sections) -filterto a list of sections.

FilterSections(Predicate<Section> sectionPredicate) -filterto sections chosen based

on a predicate condition.

FilterSections() -filterto all sections inthe Sections collection.

Examples:

p.FilterSections(Sections[0]);
p.FilterSections(Sections.where(x=>x.Name.Contains("Chapter")));
p.Filtersections(Sections[0].Children);
p.FilterSections(x=>x.Name.Contains('"'Chapter™));

SectionsClear() -remove Sections

Section " object contains the following properties and methods:
int ID -section number
int ParentID - parent section number

Token Token - first token in the section. All Token properties are also all available on the section
level. So instead of section.Token.Text you can use Section.Text and so on.

int StartIndex -index of the first token in the section

int EndIndex -index of the last token in the section

int Level -section level. Top levelis 1, sublevels are 2, 3, 4...

Section Next - next section

Section Prev -previous section

Section Parent - parent section

List<Section> Children - subsections of the current section

List<Section> Siblings - all sections that belong to the same parent (including current section)
Filter() -filter the PdfParser to the current section

Parse() -return a new PdfParser object (full copy) that contains only objects in the current section

Images and OCR

Images are (optionally) extracted from PDFs into IvyImage collectionin IvyDocument. IvyImage
object has a few properties, like X,Y coordinates, Width and Height and ImageBytes array containing
actual image. Sometimes it's enough to know that some area contains an image (for example
checking for a signature at the bottom of a page), in which case you can use RegionContainsImages
function. Ifimages contain text you can use OCR to extract it and convert to tokens using free
Tesseract library. OCR can be done in a few ways:

1. Have images OCR'ed while reading PDF, by setting pdfrReadoptions .You have to set a few
things to enable it
(remember, images are NOT extracted by default!)

//0pen PDF file and run OCR
PdfReadoptions o = new PdfReadOptions;

o0.ReadImages = true;

o.CompressIimages = true; // saves memory and IPB file size
o.CompressionQuality = 75;

0.0CR = true;

o.TesseractDataFolder = "c:\tesseract";
o.TesseractLanguage = "eng";

0.0crMode = OcrMode.whenNoText; //run OCR only for scanned, not-searchable
PDFs

pdfParser p = new PdfParser(IvyDocumentReader.ReadPdf("sample_document.pdf",
0));

Tesseract files for supported languages can be found here: https://github.com/tesseract-ocr/te
ssdata_best

2.Read images from PDF, but run OCR later in your code using functions below. This way you can
OCR only some images.

ocr(List<IvyImage> images, bool onlywhenNoOverlappingText, string
tesseractDataFolder, string tesseractLanguage) -run OCR on provided image collection,
using provided path to Tesseract model files and language. OCR will be skipped when
onlywhenNoOverTlappingText is set to true and some tokens already overlap the image.

ocr(List<IvyImage> images, bool onlywhenNoOverlappingText = true) -run OCRon
provided image collection using default Tesseract path and language set in pdfReadoptions .

ocr(Predicate<IvyImage> match, bool onlywhenNoOverlappingText = true) -run OCRon
images selected by Predicate condition

ocr(bool onlywhenNoOverlappingText = true) -run OCRon allimagesinthe document

Examples:

p.ocr(x=>x.Page == 12) //OCR all images on page 12
p.ocr(x=>x.Height > 300) //0only OCR images larger than certain height

3. Read images, then use third-party OCR service, for example AWS Textract, Azure or Google OCR.
Commercial OCR services may have better quality than the free Tesseract library.

Here is an example using AWS Textract. You can use it as a guidance to plug-in other OCR
services.

using Amazon;

using Amazon.Runtime;

using Amazon.Textract;

using Amazon.Textract.Model;
using IvypPdf;

namespace MyLib

{

https://github.com/tesseract-ocr/tessdata_best

public static class ocr
{
pubTlic static void OcrAwsTextract(this pdfParser p, List<IvyImage>
images, bool onlywhenNoOverlappingText = true)
{
// Set up AWS credentials and Textract client
var credentials = new
BasicAwSCredentials (MyAwsAccessKey,MyAwsSecretKey) ;

var textractClient = new AmazonTextractClient(credentials,
RegionEndpoint.USEastl);

bool tokensAdded = false;
foreach (IvyImage image in images)
{
if (onTywhenNooOverlappingText &&
p.ImageHasOverlappingTokens(image)) continue;

var request = new DetectDocumentTextRequest();
request.Document = new Document();

request.Document.Bytes = new MemoryStream(image.ImageBytes);

// Send the request and get the response
var response = textractClient.DetectDocumentText(request);

// Extract the text from the response
foreach (var block in response.Blocks)
{
if (block.BlockType == "WORD")
{
Token t = new Token();
t.Text

non

block.Text + ;

t.Page = image.Page

//Textract returns coordinates as percentages of
width/height

t.X = (float)Math.Round(image.X +
bTock.Geometry.BoundingBox.Left * image.width, 1);

t.Y = (float)Math.Round(image.Y +
block.Geometry.BoundingBox.Top * image.Height, 1);

t.width =
(float)Math.Round(block.Geometry.BoundingBox.width * image.width, 1);

t.Height =
(float)Math.Round(block.Geometry.BoundingBox.Height * image.Height, 1);

p.Al1Tokens.Add(t);
tokensAdded = true;

if (tokensAdded) p.SortTokens();

pubTlic static void OcrAwsTextract(this pdfParser p,
Predicate<IvyImage> match, bool onlywhenNoOverlappingText = true)

{

p.OcrAwsTextract(p.Images.FindA11(match),

onlywhenNoOverTlappingText) ;
}

DataSetParser

To parse Excel, CSV and other structured formats you can use DataSetParser class.

Create parser
DataSetParser(Dataset dataSet) - create from existing DataSet

DatasetParser(DataTable dataTable) - create from existing DataTable

Open document

DataSetParser(DataSetReader.ReadExcel(string filename)) - open xls, xIsx, xIsm, xIsb or csv
file.

DataSetParser(DataSetReader.ReadExcel(Stream stream)) -open from astream.

Search text
Find(params string[] text) -search for next cell containing text (partial match)
Find(Regex regex) -search for next cell matching specified pattern.

FindPattern(string pattern) -search for next token matching specified pattern. See Pattern

Matching

You can search backwards:
FindPrev(params string text)
FindPrev(Regex regex)

FindPrevPattern(string pattern) -search for next token matching specified pattern. See

Pattern Matching

Search sheet (tab) by number or name
Findsheet(int sheet) - move to first cell on the specified sheet
FindSheet(string sheetName) - find a sheet where name contains provided text

FindSheetPattern(string pattern) -find a sheet where name matches specified pattern. See

Pattern Matching

af://n364

Find a cell relative to current

Left(int steps = 0) - move current position to the left. If non-zero number is specified then
move exactly that numbers of cells. Otherwise, move until non-empty cell is found.

Right(int steps = 0)
Up(int steps = 0)

Down(int steps = 0)

Find first non-empty cell in line above or below the current
Above() - finds left-most non-empty cell in the line above.

Below() -finds left-most non-empty cell in the line below.

Select table area

DataTable Table(int headerRows = 1) - auto-grow table from current position, in left, right and
down directions until empty columns/rows encountered. The top headerRows rows will be used as a
header (default = 1)

DataTable Table(bool left, bool up, bool right, bool down, int emptyColumnLimit, int
emptyRowLimit, int headerRows = 1) - auto-grow in specific directions only, allow limited
number of empty columns/rows on the way.

DataTable Table(int left, int top, int width, int height, int headerRows = 1) - select
area relative to current position.

DataTable Table(int width, int height, int headerRows = 1) - select area starting from
current position.

DataTable Grid() - auto-grow table from current position, in left, right and down directions until
empty columns/rows encountered. The header will be Field1, Field2, ...

DataTable Grid(bool left, bool up, bool right, bool down, int emptyColumnLimit, int

emptyRowLimit) - auto-grow in specific directions only, allow limited number of empty
columns/rows on the way.

DataTable Grid(int left, int top, int width, int height) - select area relative to current
position.

DataTable Grid(int width, int height) - select area starting from current position.

DataSetParser properties
DataSet Dataset - reference to underline Dataset object
int Sheet - current sheet number (zero-based)

string SheetName - current sheet name

int X - current column
int Y - current row

string Text - text value of the current cell

IlvyDocument

Ivy converts PDF files to collection of Tokens and Lines .PdfParser class can be used to search this
collection and extract useful information. In addition the collection can be stored as IPBfile - a
special format that can be loaded much quicker than PDF.

Properties

List<Token> Tokens - collection of tokens extracted from PDF. (Tokens are text objects with

location and size information.)
List<LineF> Lines - collection of lines extracted from PDF.
double[] PageSizesx - pages width

double[] PageSizesY - pages height

Methods

LoadIpb(string filename) - read IPB file

LoadIpb(byte[] fileContents) -read IPBfile from in-memory byte array
SsaveIpb(string filename) -saveto IPBfile

PerformTokenLayout (PdfReadoptions pdfReadoptions) - aftertokens are loaded from PDF file
Ivy performs some additional steps to make data easier to use. The following logic is applied:

e |ong tokens with whitespace characters are being split. For example token "A.....B" would be
split into tokens "A" and "B".
e Adjacent tokens with same font height are merged (combined) together.

e Pdfdocuments often have tokens with no text, used as a whitespace. By default vy uses these
tokens to properly position the tokens that contain actual text. However, in some cases it may
be beneficial to ignore them completely. TokenLayoutType parameter specifies the required

behavior:
o UsewhitespaceTokens -whitespace tokens are being used (default)
© 1IgnorewhitespaceTokens -whitespace tokens are not used
o Follow pdf Sequence -only tokens from same PDF print sequence (BT/ET) are merged
o None -no layout logic applied

e Tokens that are intersected by lines are split into two (if sp1itTokenByLines flag is set)

You have an option to ignore default vy layout logic and apply your own instead. You can write your
own logic completely, or you can use the following pre-defined methods:

af://n419

CombineTokens (Comparison<Token> predicate) - combine tokens based on predicate logic

CombineTokens (Comparison<Token> predicate, string character) - combine tokens, adding a

character in between (e.g. space)

SplitTokensByCharsSequence(char[] chars, int minLength) - split tokens on provided
characters, making sure the resulting tokens are not small than minLength

Append(IvyDocument anotherIvyDocument) -append another IvyDocument atthe end of the
current one. Can be used to combine multiple PDF files together.

IvyDocumentReader

This class is used to read PDF documents and convert them to token collection representation.
IvyDocument ReadPdf(string filename) -read PDF document from file.

IvyDocument ReadPdf(byte[] fileContents) -read PDF document from memory.
IvyDocument ReadIpb(string filename) -read |IPB document from file.

IvyDocument ReadIpb(byte[] fileContents) -read IPBdocument from memory.

Open document with specified reading and post-processing logic

IvyDocument ReadPdf(string filename, PdfReadOptions pdfReadOptions)

IvyDocument ReadPdf(byte[] fileContent, PdfReadOptions pdfReadOptions)

Optional parameter pdfrReadoptions specifies layout logic applied to token collection and reading
options. Available parameters are
e TokenlLayoutType - specifies layout logic applied to tokens after the document is read
o UsewhitespaceTokens -whitespace tokens are being used (default)
o 1IgnorewhitespaceTokens -whitespace tokens are not used

o Follow Pdf Sequence -only tokens from same PDF print sequence (BT/ET) are merged

© None - no layout logic applied
e ReadLlines - read graphical objects from PDF. Default: true
e ReadCurves - read curve objects (ReadLines should be set too). Default: true
e ReadAnnotations - read annotations objects (PDF forms, and other content). Default: true
e Readlmages - read images from PDF. Default: false

e Compressimages - store images in compressed format in memory (also in IPBfiles). It greatly
reduces IPB file size, but may decrease image quality. Default: false

e CompressionQuality - level of compression to apply to images (1-100). Default: 50
e |gnoreWhiteLines - ignore lines/curves of white color, as they are usually invisible. Default: false
e RemoveShadows - tries to remove shadows (duplicate tokens printed on top). Default: true

e SplitTokensByLines - split text tokens at the points they are intersected by lines. Default: false

af://n457

e TokenMergeTolerance - max distance (in points) between low-level PDF text objects to merge
them into text tokens. Default: 1.0

e OCR - extract text from images using Tesseract engine. Default: false
e TesseractDataFolder - location of Tesseract files. Default: ./tessdata
e TesseractLanguage - language to use for OCR. Default: eng

e OcrMode - one of the following OCR modes:

o WhenNoText - only run OCR if the document contains no text (for example a scanned
PDF)

o WhenNoOverlappingText - for every image, only run OCR if there is no text overlapping it
already (default)

o Always - always run OCR

In lvy Template Editor you can use "File\Options" form to specify PDF reading options. These
options will be applied the next time you open a document.

In addition you can specify these options on the Template object. When you specify a template to
be used for extraction, the corresponding pdfReadoptions parameters are being use.

DataSetReader

This class is used to read Excel and CSV documents into a DataSet object.
DataSet ReadeExcel(string filename) -read Excel or CSV document.

Dataset Readexcel(Stream stream) -read from a stream, automatically recognizing file format.

DataTable extensions

Ivy Library includes many extension methods that can be used to join and filter bataTable objects
to get the data you need.

The methods below return pataTable object. We will skip the return data type for readability:

Filter columns

e sSelectcolumns(bool allowMissingColumns, params int[] indexes) -select subset of

columns by index.

SelectColumns(bool allowMissingColumns, params string[] names) -select subset of

columns by name.

e sSelectColumns(Predicate ColumnPredicate) -select subset of columns by predicate
condition.

e sSelectColumnsPattern(params string[] patterns) -select subset of columns matching
specified patterns. See Pattern Matching

e SelectColumnsAs(bool allowMissingColumns, bool addMissingColumnAsEmpty, params
string[] names) -select subset of columns by name and rename to provided new names.

af://n519
af://n524

e SelectColumnsAsPattern(bool allowMissingColumns, bool addMissingColumnAsEmpty,
params string[] names) - select subset of columns by patterns and rename to provided new
names. See Pattern Matching

allowMissingColumns - optional parameter (default = false). If not set and the table doesn't
contain specified column the exception is thrown.

addmissingColumnAsEmpty - optional parameter (default = false). If set and the table doesn't
contain specified column, the column is added as empty. Otherwise this column is ignored.

e DeleteColumns(bool allowMissingColumns, params int[] indexes) -remove columns by
index.

DeleteColumns(bool allowMissingColumns, params string[] names) -remove columns
by name.

e DeleteColumns(Predicate columnpPredicate) -remove columns by condition.

e peleteColumnsPattern(bool allowMissingColumns, params string[] patterns) -remove

columns matching specified patterns. See Pattern Matching

e NameColumns(params string[] names) -rename columns, providing the names in order.

e Addcolumn(string name, dynamic value = null, Type columnType) -add new column
with specified name, default value and data type.

Example:

mytable.SelectColumns(0,2,3) //select first, third and fourth columns
mytable.SelectColumns("name","price","quantity") // select by name
mytable.SelectColumns (x=>x.ColumnHeader.Contains("Amount")) //select by

condition

mytable.DeleteColumns(0,2,3) //delete first, third and fourth columns

mytable.DeleteColumns("name","price","quantity") // delete by name
mytable.DeleteColumns (x=>ColumnHeader.Contains("Amount")) //delete by condition

mytable.AddColumn("Amount™, "0.00", typeof(string))

mytable.NameColumns("Price", "Amount", "Total")

//Let's assume mytable contains columns "Fieldl", "Field2", "Field3"
mytable.SelectColumns("Fieldl", "Field4") // throws exception "Cannot find
Field4"

mytable.SelectColumns(true, "Fieldl", "Field4") // returns Fieldl

mytable.SelectColumnsAs("Fieldl", "cColl", "Field4", "cCol2") // throws exception
mytable.SelectColumnsAs(true, "Fieldl", "coll", "Field4", "col2") // returns
Fieldl as Coll

mytable.SelectColumnsAs(true, true, "Fieldl", "coll", "Field4", "col2") // returns
Fieldl as Coll and empty column Col2

Filter rows
e sSelectRows(string RowFilter) -select subset of rows by row filter.
e SelectRows(Predicate RowPredicate) -select subset of rows by predicate condition.

e sSelectRowsContainingText(params string[] text) - select rows that contain specified text

in one of the columns.

SelectRowsContainingTextPattern(string pattern) -select rows that contain text
matching specified pattern. See Pattern Matching

e DeleteRows(Predicate rowPredicate) -remove rows by predicate condition

e DeleteRowsRange(Predicate fromRowPredicate, Predicate toRowPredicate) -remove

rows between those found by predicate condition.

e DeleteRowsContainingText(params string[] text) -delete rows that contain specified text

in one of the columns.

e DeleteRowsContainingTextPattern(string pattern) -delete rows that contain text

matching specified pattern. See Pattern Matching

Example:

mytable.SelectRows("amount > 0")

mytable.SelectRows (x=>x[0] .ToString() .Length > 0) //rows where first column is not
empty

mytable.SelectRows (x=>x[0] .ToString() .Contains("Total")) //rows where first column
contains some text

mytable.DeleteRowsContainingText("Total", "total") //delete by specific text
mytable.DeleteRows (x=>x[0].ToString() == "") //rows where first column is empty

mytable.DeleteRowsRange(x=>x[0].ToString().Contains("start"),
x=>x[0].ToSstring() .Contains("end")) //delete rows between text "start" and

"and"
mytable.Rows.RemoveAt(0) //delete the first row

Relational operations

e Join(DataTable Second, string FJC, string SJC) -join two tables based on specified
columns (inner join).

DataTable LeftJoin(DataTable Second, string FJC, string S3C) -left outerjoinon

specified columns.

DataTable FullouterJoin(DataTable Second, string FJC, string SiC) -full outer join

on specified columns.
e Union(pataTable Second) -union (append)two tables together.

e Union(DpataTable Second, bool UseColumnNames) -union two tables, but use column names

to match them, even if columns are in different order.

Example:

mytable.Join(mytable2, "name", "name") //inner join
mytable.LeftJoin(mytable2, "item", "product") //left join
mytable.Union(mytable2) //union in column order
mytable.Union(mytable2, true) //union using column names

Group by, rollup, transpose and reverse

Distinct(string Column) -return unique values from specified column.
Example: myTable.Distinct("name")

GroupBy(DataColumn[] Grouping, string[] AggregateExpressions, string[]
ExpressionNames, Type[] Types) - group by specified columns

Ro1lup(string nonEmptyColumn) - if specified column has empty value in any row the data in
this row is "rolled" (concatenated) into previous row. This is useful for cases when table has a
column with a long text that extends to second row.

Ro1Tup(bool fromTopToBottom, params int[] nonEmptyColumnIndexes) -rollup values
with the row above or below the empty one, based on fromTopToBottom parameter.

Ro1lup(float minRolledupLength, int nonEmptyColumnIndex) -rollup only if total text
length in the concatenated column is over minRoT11edupLength

Transpose(this DataTable dt) -transpose table using first column values are column
headers

Reverse(this DataTable dt) -reversethe table row order

TableFromArray(object[,] DataArray) - create table object from a data array

Formatting and cleanup

ToNumber (params string[] names) - convert text in the specified columns to the numeric
representation, removing currency symbols, percentages, etc. Non-numeric values are changed
to empty string.

This function uses global Ivyoptions.ToNumbercultureInfo settings for number parsing.

ToNumber (params int[] indexes) -convert textin the specified columns to the numeric

representation.

ToDate(params string[] names) -convert textin the specified columns to dates, removing
dates that cannot be recognized.

This function uses global Ivyoptions.TobDateFormatMonthFirst settings for date parsing.
ToDate(params int[] indexes) -convert textin the specified columns to dates.

TokenToString(this DataTable dt) -converts all Token objects in the table to their string
representation.

Example:

mytable.ToNumber(0,1,4) //format text in the specified columns as numbers
mytable.ToDate("maturity", "current date") //format text as date

Update values

e Update(Action action) - update table values according to action logic.

e Update(Action action, Predicate where) -update tablevalues accordingto action logic
and where condition.

e ReplaceText(int columnIndex, string find, string replaceTo) -search and replace
text in the specified column.

e ReplaceText(string find, string replaceTo) - search and replace text across the whole
table.

Example:

mytable.Update(x=>x[2]=x[0].ToString() + x[1].ToSTring()) //concatenate first and

second columns and store the result in the third column
mytable.Update(x=>x[1]="", x=>x[0].ToString().Contains("Total")) //remove text
from second column when first column contains specific word
mytable.ReplaceText("Total", "") //replace text in all table cells

Various functions

e double GetSum(string colNameToSum, string whereClause) - get total valuein one
column.

bool HasText(string text) -check whetherthe table contains specified text.

bool ContainsColumns(params string[] names) -check whethertable header contains all
provided columns.

e bool ContainsColumnsPattern(params string[] patterns) -check whethertable header
contains all columns matching provided patterns. See Pattern Matching

e bool HeaderMatches(params string[] names) -check whethertable header matches
provided list (all columns exist in the same order)

e bool HeaderMmatchesPattern(params string[] patterns) -check whether table header
matches provided patterns. See Pattern Matching

e bool HasemptyRows() -checks whether the table has empty rows
e bool HasEmptyColumns() - checks whether the table has empty columns

e DataSetParser Parse() -returns DataSetParser that can be used to further parse the data

Example:

bool correctTable = mytable.HeaderMatches("name", "quantity", "amount");
bool empty = mytable.HasEmptyColumns();

double sum = mytable.GetSum("amount","quantity>0");

//using DataSetParser
double total = mytable.Parse().Find("Total").Right().Text.ToNumber();

String extensions

e double? ToNumber() -convert stringto number.

This function uses global Tvyoptions.ToNumbercultureInfo settings for number parsing.
e DateTime? ToDate() -convert string to DateTime.

This function uses global Tvyoptions.TobDateFormatMonthFirst settings for date parsing.

e string TextBetween(string matchFrom, string matchTo) -returnstext between two
strings.

e string[] TextsBetween(string matchFrom, string matchTo, bool includeTags =
false) -returns all occurrences of text between two strings. Both beginning and ending strings
should exist in the text and not overlap.

e bool MatchespPattern(string pattern) -checkswhether string matches provided pattern.

See Pattern Matching

Example:

double value = "150%".ToNumber();
DateTime date = "oOn the July 1, 2015".Tobate();

string text = "this is text".TextBetween("this", "text");
string[] texts = "<td>valuel</td><td>value2</td>".TextsBetween("<td>",6"
</td>");

Global options
Ivyoptions class can be used to specify some global options. It has the following properties:

e TablecCellType TablecCellType - specifies default value for
PdfParser.Options.TableCellType

e cultureinfo ToNumbercultureInfo - specifies culture settings used by ToNumber() function.
® bool ToDateFormatMonthFirst - used by Tobate() function.

cultureinfo and ToDateFormatMonthFirst are set according to local machine settings by default.

In lvy Template Editor the settings can be changed on the template level, by adding this code to
Template Settings:

af://n672

protected override void Init()

{
Ivyoptions.TableCellType = TableCellType.String;
Ivyoptions.ToNumbercCultureInfo = new CultureInfo("fr-FR");
IvyOptions.ToDateFormatMonthFirst = true;

b

Reserved words

Ivy templates have the following pre-defined objects (please refer to definition of TemplateBase
class, which can be found in Template Editor: Template Library \ Custom Code Modules collection):

p - PdfpParser object that is loaded from PDF or IPB files.

d - DatasetParser object loaded from xls, xIsx, xIsm, xIsb or csv files.

s - string object loaded from txt, htm, html, xml or json files.

In addition, there are the following public fields:

filename - contains the full path of the loaded file.

args[] - additional parameters that can be provided via command-line.
_Init() method initializes the objects above.

Init() method is meant to be overridden by code in templates, providing custom initialization
when needed.

Command-line parameters

lvy Template
-e Extract data and save into Excel, Json or XML:

IvyTemplate.exe -e InputFile OutputFile TemplateLibrary TemplateName]|Auto

[Parameters]

For the Auto-template selection the template should have a field called
AutoTemplateSelectionCriteria, containing logic that returns “true” if the template should be
selected.

outputFile should have extension xlsx, .json or .xml to determine output format

-v Validate extraction - run the template, but do not save the results:

IvyTemplate.exe -v InputFile TemplateLibrary TemplateName [Parameters]

-i Convert a PDF file to IPB:

IvyTemplate.exe -i InputFile OutputFile

af://n714

Ivy Template Editor
-0 Open for preview in GUI mode:

IvyTemplateEditor.exe -o InputFile TemplateLibrary

Returned %%ERRORLEVEL%% values:
0 - success
1-error

2 - template validation failed

Examples
PdfParser

e |oad PDFfile:

pdfParser p = new PdfParser(IvyDocumentReader.ReadPdf("mydoc.pdf"));

e Get text from section "Revenue", on the right of word "Total":

string text = p.Find("Revenue").Find("Total").Right().Text;

e Extract full text from page 15:

string text = p.FindPage(15).FilterCurrentPage().ExtractText();

e Extract full text from page containing word "summary":

string text = p.Find("summary").FilterCurrentPage().ExtractText();

e Find page containing word "summary" and extract text in the left upper corner:

string text = p.Find("summary") .window(0, 0, 100, 100).ExtractText();

e Extract text between words "summary" and "total":

af://n737
af://n738

int fromToken

p.Find("summary") .Index;
.Find("total").Index;
.FilterIndex(fromToken, toToken).ExtractText();

int toToken =
string text =

T T

e Extract full document text:

string text = p.ExtractText();

e Extract table using absolute border location:

pdfTableOptions options = new PdfTableOptions();
options.ColumnBorders = new double[5]{0,235,293,366,430};
DataTable myTable = p.Table(options);

Don't forget to call p.Reset() between the calls (if needed).

DataSetParser

e |oad Excelfile:

DataSetParser d = new
DataSetParser(DataSetReader.ReadExcel ("myspreadsheet.x1s"));

e Get text from section "Revenue", on the right of word "Total":

string text = d.Find("Revenue").Find("Total").Right().Text;

e (Capture table on tab "Sheet2" that starts from word "Price":

DataTable price = d.FindsSheet("sheet2").Find("Price").Table();

Pattern Matching

Functions that end with "Pattern" are accepting wildcards for text matching. The syntax is:
* -any sequence of characters

? -any character

| -divider between multiple patterns

af://n782
af://n798

All pattern searches are case insensitive. The special characters above can be escaped with a
backslash \

Examples:

p.FindPattern("*amount*") //text that contains "amount"
p.FindPattern("amount*") //text that starts with "amount"
p.FindPattern("*a??unt") //text that ends with "a", followed by two characters,
then "unt"

p.FindPattern("amount*|value*") //text that ends with "amount" or "value"
p.FindPattern("amount|value") //text that equals to "amount" or "value"
p.FindPattern("*") //text containing asterisk

p.FindPattern("\\") //text containing backslash

mytable.SelectColumnsPattern("exactnamel|exactname2", "exactname3")

"y N 1] "y

mytable.SelectColumnsPattern("*category*|*type*", amount® | *value*'")
mytable.SelectColumnsAsPattern("*category*|*type*", "name

"amount")

"oy

famount* | *value*",

mytable.DeleteColumns (x=>x.ColumnName.MatchesPattern("Field*"))

Using TemplateLib in .Net

Requires .Net Framework 4.5 or Netstandard2.0
You need to add references to the following DLLs:
e TIvypdf.dl11 -to use PdfParserfunctionality
e TvyDocumentReader.d11 - to read PDF files
e TIvyDataSet.d11 -to read Excel and CSV files
e TIvyTemplateLib.d11 - to usetemplates created via lvy Template Editor

using IvyPdf;
using IvyTemplateLib;

//0pen template library file
TemplateLibrary t1 = TemplateLibrary.LoadTemplateLibrary("sample_Tlibrary.t1");
t].StaticCodeMode = true; //to prevent recompile on every run

//0pen PDF file
pdfParser p = new PdfParser(IvyDocumentReader.ReadPdf("sample_document.pdf"));

//Run a template and get the results

List results;
t1.RunTemplate("Templatel”, p, out results);

Opening a document with specified pdfrReadoptions parameter

af://n807

using IvyPdf;
using IvyTemplateLib;

//The very first call to RunTemplate() may incur 2-3 second delay, due to
initialization of Roslyn engine.

//There's no way to avoid it completely, but we can start initialization on the
background before it's being used. This is optional and needs to be done only
once.

TemplateLibrary.warmup();

//0pen template library file
TemplateLibrary t1 = TemplateLibrary.LoadTemplateLibrary("sample_library.t1l");
t]l.StaticCodeMode = true; //to prevent recompile on every run

//Find template to run
Template t = Templates.First<Template>(x => x.TemplateName == "Templatel");

//0pen PDF file using template-specific PdfReadOptions
PdfParser p = new PdfParser(IvyDocumentReader.ReadPdf("sampTle_document.pdf",
t.PdfReadoptions));

//Run a template and get the results
List results;
tl.RunTemplate(t, p, out results);

Custom layout

In some cases default layout logic doesn't work and you may have to replace it with custom code.
For your reference below is standard logic used to combine token collection.

IvyDocument doc = IvyDocumentReader.ReadPdf("abc.pdf", TokenLayoutType.None);
//this is standard logic used to combine tokens. You may want to adjust it.

//Remove shadow tokens
doc.RemoveTokens ((tl, t2) => (
(tl.overlapRatio(t2) > 0.95)
&& (tl.Text == t2.Text)
&& (tl.Text.Trim(Q !="")
)70 : -1);

//filter out vertical Tines only, to speed up comparison
//also note start of each page
Dictionary<int, int> linePageStart = new Dictionary<int, int>(Q);
int p = 0;
List<LineF> Tines = new List<LineF>(Q);
foreach (LineF 1 in Lines)
{
if (Math.Abs(1.X1 - 1.X2) > 5) continue;
Tines.Add(1);
if (1.page !'= p) {
TinePageStart.Add(1.Page, lines.Count - 1);
p = 1.Page;

af://n824

3
Tines.sort((a, b) => (a.Page > b.Page)?1:(a.Page<b.Page)?-1:
a.X1l.cCompareTo(b.Xx1));

//combine adjacent tokens
doc.CombineTokens((tl, t2) => (

tl.overlap(t2) //adjacent/overlap and on the same Y (+/- 1/3 of height)

&& (tl.Font == t2.Font) //same font properties

&& (tl.Bold == t2.Bold)

&& (tl.Italic == t2.Italic)

&& (Math.Abs(tl.Height - t2.Height) < 0.1) //same height

&& (!SeparatedByverticalLine(tl, t2, lines, linePageStart)) //do not have a
Tine between

) 70 : -1);

//re-sort in case some tokens moved
doc.Tokens.Sort(new TokenComparer());

//split long tokens by sequence of whitespace characters
doc.SplitTokensByCharsequence(new char[] { " ', '".' }, 4);
doc.splitTokensByCharsequence(new char[] { '.." }, 1);

//remove all whitespace tokens that haven't been combined with anything else,
including standalone periods

doc.Tokens.RemoveAll(x => string.IsNullorwhiteSpace(x.Text.Trim(new char[] { '..",

RPN DD

//trim text
foreach (Token token in doc.Tokens) token.Text = token.Text.Trim(Q);

Tutorial

PDF documents can be tricky. They range from simple and clean reports to extremely convoluted
ones, with random artifacts and structural errors. The task of extracting specific values may be
daunting, especially if you need to do it for large number of documents on multiple occasions. A
computer can help with repeating tasks, but it's up to you to define the parameters and the kind of
information you are looking for. Every document is different, however, there are some common
scenarios, so let's try to break them down.

The data you need is always in the same exact location

This is pretty common for various receipts, financial statements and so on. And it's easy to filter out:
First get the page you need, e.g. it's on page 3.

P.Filterpage(3)

(In'lvy Template Editor p is a predefined pdfParser object)

Then filter for exact location:

af://n828

.Filterwindow(10,10,50,20)

(Use Filter button in the template editor to create a window, then move it to the required location to
get coordinates)

This will get you the first token in the selected "window". If you want all text that fits in there - just
add .extractText()

The data you need follows a specific word

It may move to different places in the document, so exact position is not known. Let's say you want
to get a number that follows a word "Total":

P.Find("Total").Right() .Text

That was easy, wasn't it? Please be aware that Find() uses case-sensitive search and it will find any
token that contains your string. You can also search for occurrence of multiple strings, like this:

Find("Total", "total")

You probably expect to find a number there, but it may have extra characters like currency signs,
commas, percentage symbols. Simply use .ToNumber() function to clean it up. Another handy
function is Tobate() . It can recognize dates in most formats, even surrounded by other text.

Hint: You don't necessarily need to type the search text yourself. In the Template Editor right-click
the token you want to get and click "Suggest". You may need to clean up some code that is
generated (the logic there is to search for a specific section, which would usually have larger font,
then subsections, then the word next to the token you need. Some of these steps may be omitted
in your case)

Extracting tables

Let's say there is a table in PDF and it's a tedious task to get it out manually, so let's see what we can
do. Tables can quickly become tricky. There's no way to deal with every table out there, since there
are way too many variations. Let's start with a simple one first.

Simple, rectangular table with a header

First you need to find a header. Right-click any header token and click "Suggest" - you should get a
logic that brings you to that token. Let's say this:

P.Find("Fieldl")

Now just add .Table() and preview the results. In many cases this works right away and is really
that simple.

By default IvyPdf does not use any graphical objects, like lines that surround table cells. Instead, the
table is built using positions of the text tokens relative to each other. Due to this, some cells may get
shifted to a wrong column or row. Also, you may get some unwanted data. You can try to fix this

post-factum, using table extension methods like .Ro11lup, DeleteRows, DeleteColumns and so on.

Table without header

Just find any token in the top row. (For example it may be Below some specific text). Then use
Grid() function.

Table with subtotals between rows

You have two options: you can get the whole table, then delete specific rows using DeleteRows
method, or you can filter out unwanted tokens first. Let's assume the subtotals are in bold:

p.Filter(x=>x.Bold).Find("headerl™).Table()

Table with sub-headings that you want to add as a data column

This one is tricky. You would need some sort of loop for this. First create an empty DataTable
object. Then find a sub-header and store it into a variable. Then move Below and call Grid() .
union the results with the empty table. Add new column, providing the stored header as a default

value. Repeat. It may need a lot of tweaking to make this work, but you have a few helpful tools at
your disposal:

e Bookmarks are handy when you need to go back and forth, especially if you applied a filter and
need to move to previous position.

e Conditional If and While loop - you can write a regular C# code instead, but these two provide a
concise syntax that can make your code easier to read. (Just don't forget to add comments.)

e Table and Grid functions have one very important option - Whitespace limit. You already
pointed to the table header, but how does it know where the table ends? Well, usually there's
some gap between end of the table and the following text, which is larger than spacing
between rows. By default the limit is 2.5 which means the gap should be 2.5 times bigger than
average row height. You can change that number according to your needs.

Various collections

Let's say you want to find all telephone numbers in the document. First, Filter by aregular
expression, then use resulting Tokens collection - loop or convert to a bataTable . IlvyPdfis using
DataTables extensively. We prefer DataTables over other collections for their flexibility. We extended
their functionality, so you can use Join, union, and many other handy functions. However, you
can create any collections you like, use Ling, add your own extensions and so on.

Connect to a database, read a text file, get data from a web service

In the "Template Library Settings" you can add as many "Modules" as you want. The modules are C#
classes that you can call from your expressions. In addition you can reference any .Net assembly and
use its methods.

Quick Hints

Here are some quick hints on lvy Template Editor (in no particular order):

af://n881

Ivy is using C#, therefore everything is case-sensitive. Commands, variable names, fields and
search strings are all case-sensitive.

Template and field names should follow C# naming conventions. Spaces are not allowed and
names cannot start with a number.

When you run one field, all templates and fields are compiled as one piece. This means if you
have a syntax error in one field the others will fail as well. It can be hard to figure out where the
issue is, so the best approach is to change one field at a time and test it after each change.

Field Data Type is very important. It defaults to dynamic, but it's a good idea to change it to
proper type instead. Otherwise you may get errors when you try to reuse this field in other
fields.

For example, iffield a is a table, but defined as dynamic you cannot use a.Rows.Count
property. But ifyou change it to DataTable it works as expected.

In most cases you should use .Text to get string values of tokens. For example:
Instead of:

P.Find("total").Right()

Use:

P.Find("total").Right().Text

The exception is when you want to find a token and then move in different directions fromit's
position. For example you may want to use:

b=a.up() and c=a.bown()

The example above- b =a.up() -leads to another problem. Your token object is a reference
and if you move up() in one field it changes the position of the referenced object and the
other fields will be changed too. The correct way to do thisis a.copy().up() and

a.copy() .pown() -this creates a full copy of the original object. (You can also use Clone(),
which is same thing)

Use "toolbox" to test various functions, e.g. search, filters, tables, then copy the resulting pieces
of code into your definition.

Use "suggest" command (on the right-click) to quickly write search sequences.

Instead of creating new fields manually use Ctrl+drag-and-drop to make a copy of existing field,
along with code and validation logic. Then refine the code.

You can reuse code by creating an intermediate field. Simply uncheck "include in the output"
and use it in other fields. For example, capture a table once, then select different rows/cells
fromit.

If you are not familiar with C# DataTable object it's helpful to spend some time and go over the
docs. You can use Rows and columns collections, loop through them and use many extension
methods provided by IvyPdf to do filters, joins, and so on.

We often get questions on what is the best way to organize the templates. The answer really
depends on your use case. In simple cases you may get away with one template and a few
fields. In more complicated ones we suggest using template inheritance to cover a few similar
formats. If you have very large number of formats along with many fields/sections that need to
be captured, you may consider the following approach: create a separate template for every
item that needs to be captured (e.g. Accounts, Payments, Ledger, etc) and have variables like
Accounts1, Accounts?2, ... for every version of document format. This way you can create a
mapping between your documents and the correct variable that should be used for that

https://msdn.microsoft.com/en-us/library/system.data.datatable(v=vs.110).aspx

document (outside of lvy) as well as test these variables with multiple documents. Itis a
complicated structure that requires additional code and a database to store the results, but
some users found it to be the best approach for complicated scenarios.

FAQ

General questions

e Whatis lvyPdf?

o |lvyPdfis a software that extracts data from PDF documents using the logic you define.
e What are system requirements?

o .Net4.5or .Net Core
e Canitread any PDF?

o Yes, however, not all PDFs are easy to use for data extraction. Some PDFs may have
inconsistent structure and various artifacts, making them hard to process. We
recommend downloading a trial version and test your documents.

e How does it know which data to extract?

o You write instructions using simple commands, like "Find text", "Left", "Right". The
commands can be stored as a template and applied to multiple files.

e Do | need to know programming to use it?

o Programming background is helpful, but you can accomplish a lot using our user interface
with minimal coding. Try it yourselfl

e When should | use lvyPdf library and when vy Template Editor?

o You can use IvyPdflibrary from your .Net solution. Template Editor allows you to do
everything in Ul and is a standalone product.

e Why would | use Template Editor? Can't | do the same in Visual Studio instead?

o You can use either one, or even both mixed together. Visual Studio provides better
debugging capabilities. On the other hand Ivy Template Editor has a dedicated Ul, helps to
preview expression results, and organizes expressions into templates.

e How do | get the results from Template Editor?
o The extraction results can be saved as Excel, XML or Json files.
e How do | run Template Editor on multiple files? How do | call it from my process?
o You can use "Bulk file processing" menu option in the Template Editor.
o You can use command line interface.
o You can run it from .Net code.
e (Canladd my own functions to Template Editor?

o You can add your own code modules, written in C# or reference any .Net library and use
it's functions.

e \What is template inheritance?

o Inheritance is handy when you have sets of PDFs with small structural differences. Instead
of creating a brand new template you can use inheritance to add another variable or
change the logic for existing one, without changing anything else.

af://n916

e | have multiple templates, how does it know which one to use?

o You can provide specific template name as a parameter, or you can write a rule for
automatic template selection.

e (Can |l read files other than PDFs using Template Editor?

o Yes. It can parse Excel/CSV files, has basic support for text documents and ability to plug-in
custom logic for everything else.

o Ifyou need to combine data from a PDF file with other sources in one template (for
example another PDF, excel, text, CSV, database, web service) you can do it as well, though
it's a bit tricky. You would need to write a C# code or reference appropriate library.

e Can it read password-protected PDFs or PDFs protected from printing/data extraction?
o No, you need to remove protection first.
e Why some PDFs look fine in Adobe Reader, but have junk/garbage characters in IlvyPdf?

o Theissue is with PDF fonts. Every font should contain proper "ToUnicode" table that
specifies how the characters are converted to text. If this table is missing or incorrectly set
in the PDF file, the lvyPdf cannot extract text property. Try to select and copy text from
Adobe Reader and paste it in Notepad - if you cannot get correct text this way then lvyPdf
will have problems too.

PDF Parsing

e \What are those "tokens" and why the text is split like this in my document?

o These are pieces of text contained in the PDF. Their appearance and location is set in the
PDF document itself. A token can be a paragraph of text or a single letter - depends on
how the PDF was created. lvyPdf is reading the tokens from your document and does
some minor post-processing to make them easier to extract.

e Why would | need filters?

o Filters are used to ignore tokens that should be ignored. For example you can filter a
document for a specific page or area of the page, ignore text of a specified size or font,
filter between tokens and so on.

e How do | extract table data?

o You have to get to a header token first, then use Table() or Grid() functions.
e What is the difference between Table and Grid?

o Grid doesn't have header. The columns will be named as Field1, Field2,...
e Why my table is not recognized properly?

o Table recognition is a very complex task. lvyPdf attempts to reconstruct table structure
using tokens size and position. It's easy for well-structured tables, but becomes tricky for
tables with subgroups, subtotals, shifted columns, columns without header and so on.

e My tableis not recognized properly. What can | do?
o There are a few parameters that you can play with. See AP| Reference.
o Try to use Filter() first to remove unwanted text.
o Try to use post-processing functions to fix the data (Rollup, Delete rows/columns).

o If nothing works you may have to to write your own logic that works for your case (using
Tokens collection).

e Why do | need bookmarks?

o Bookmarks are used when you need to do repeating tasks. For example you can store
your current position, apply required filters and get data. Then reset, move to previously
stored position and continue from there.

Licensing

IvyPdfis licensed per installation. Depending on how you use lvy different types of licenses are
required.

e |fyou are using IlvyPdf for personal or non-for-profit work you can obtain the license key by
clicking the link on Downloads page. The limitation of the free license is that it expires every two
months and you will need to obtain new license key and re-register the program when it
expires.

e Commercial use within your organization:

o Ifyou are using lvy Template Editor to write extraction logic you need to purchase
developer license for every machine where lvyPdfis installed.

o Ifyou are a developer using lvyPdfin your .Net projects you need to purchase developer
license for every machine where IvyPdf is installed.

o Ifyou develop an internal application that uses lvyPdf and it is deployed to other
machines you need:

m Developer license for every developer machine.

= |fdeveloped application is used interactively, i.e. in manual mode, where users work
with one document at a time then the end users also need developer license.

= |fthe developed application is used in automatic (batch) mode, without user
intervention then you need server license for every machine where the application is
installed.

o Enterprise license covers all installations within the organization.
e Commercial use outside of your organization:
o Ifyou create application for use outside of your organization then there are two options:

= Your end users purchase IvyPdf license according to number of machines that
require lvyPdf installations (developer license if application is used interactively, one
document at a time, or server license if application is used in automatic (batch)
mode).

= You purchase OEM licenses and include them along with your software. Please
contact us for OEM pricing.

o Developer license is required for every developer machine in your organization.

License code can be set programmatically.

License.SetLicense("your license code") -setsthe license and registers IvyPdf on the current
machine.

af://n1045

License.SetSessionLicense("your Ticense code") -setsthe license forthe currently running
program, but does not register lvyPdf on the machine. This is preferable way for OEM-distributed
software.

	IvyPdf
	How to use IvyPdf
	Getting Started
	Ivy Template Editor

	API Reference
	PdfParser
	DataSetParser
	IvyDocument
	IvyDocumentReader
	DataSetReader
	DataTable extensions
	String extensions
	Command-line parameters

	Examples
	PdfParser
	DataSetParser
	Pattern Matching
	Using TemplateLib in .Net
	Custom layout

	Tutorial
	Quick Hints
	FAQ
	Licensing

